Kummer subfields of tame division algebras over Henselian valued fields

نویسنده

  • Karim Mounirh
چکیده

By generalizing the method used by Tignol and Amitsur in [TA85], we determine necessary and sufficient conditions for an arbitrary tame central division algebra D over a Henselian valued field E to have Kummer subfields [Corollary 2.11 and Corollary 2.12]. We prove also that if D is a tame semiramified division algebra of prime power degree p over E such that p 6= char(Ē) and rk(ΓD/ΓF ) ≥ 3 [resp., such that p 6= char(Ē) and p 3 divides exp(ΓD/ΓE)], then D is non-cyclic [Proposition 3.1] [resp., D is not an elementary abelian crossed product [Proposition 3.2]].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subfields of Nondegenerate Tame Semiramified Division Algebras

We show in this article that in many cases the subfields of a nondegenerate tame semiramified division algebra of prime power degree over a Henselian valued field are inertial field extensions of the center [Th. 2.5, Th. 2.12 and Prop. 2.16 ].

متن کامل

Nicely semiramified division algebras over Henselian fields

We recall that a nicely semiramified division algebra is defined to be a defectless finitedimensional valued central division algebra D over a field E with inertial and totally ramified radical-type (TRRT) maximal subfields [7, Definition, page 149]. Equivalent statements to this definition were given in [7, Theorem 4.4] when the field E is Henselian. These division algebras, as claimed in [7, ...

متن کامل

Correspondences between Valued Division Algebras and Graded Division Algebras

If D is a tame central division algebra over a Henselian valued field F , then the valuation on D yields an associated graded ring GD which is a graded division ring and is also central and graded simple over GF . After proving some properties of graded central simple algebras over a graded field (including a cohomological characterization of its graded Brauer group), it is proved that the map ...

متن کامل

Roots of Irreducible Polynomials in Tame Henselian Extension Fields

A class of irreducible polynomials P over a valued field (F, v) is introduced, which is the set of all monic irreducible polynomials over F when (F, v) is maximally complete. A “best–possible” criterion is given for when the existence of an approximate root in a tamely ramified Henselian extension K of F to a polynomial f in P guarantees the existence of an exact root of f in K. §

متن کامل

Springer’s Theorem for Tame Quadratic Forms over Henselian Fields

A quadratic form over a Henselian-valued field of arbitrary residue characteristic is tame if it becomes hyperbolic over a tamely ramified extension. The Witt group of tame quadratic forms is shown to be canonically isomorphic to the Witt group of graded quadratic forms over the graded ring associated to the filtration defined by the valuation, hence also isomorphic to a direct sum of copies of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007